Remotely sensed variables explain microhabitat selection and reveal buffering behaviours against warming in a climate-sensitive bird species

Corrado Alessandrini¹, Davide Scridel², Luigi Boitani¹, Paolo Pedrini², Mattia Brambilla³,⁴,⁵

¹Dept of Biology and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy ²MUSE – Museo delle Scienze, Sezione Zoologia dei Vertebrati, 38123 Trento, Italy ³Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), 40064 Ozzano dell’Emilia, Italy ⁴Dept of Environmental Science and Policies, Milan University, 20133 Milan, Italy

Target species: White-Winged Snowfinch (Montifringilla nivalis L.)
Location: European Alps, June-July 2017
Modelling framework: Conditional logistic regression (clogit)

Dependent variable: Presence-absence of foraging events around the nest
Predictors: Remotely sensed (daily) estimates at 10 meters/pixel

Question: Can RS variables build predictive, ecologically-sound fine-scale SDMs?

In a nutshell...

- Foraging habitat selection
- Remotely-sensed habitat descriptors
- On-field observations of nestling-rearing snowfinches

Results: • Consistent with those derived from on-field predictors
• Confirm the species’ dependance on climate-sensitive microhabitats
• Disclose behavioural buffering adopted while foraging in warmest conditions
INTRODUCTION

White-winged Snowfinch (*Montifringilla nivalis*) – a Palaeartic mountain-specialist

Despite IUCN’s «Least Concern» label, previous studies both on fine-scale habitat selection and on broad-scale breeding distribution reveal the species’ sensitivity to the ongoing climate change.

Fine-scale SDMs provide pivotal insights to guide vulnerable species’ management, but time-consuming, intensive fieldwork drastically limits their extrapolation over different areas or periods.

Providing uniform and scalable data at high spatio-temporal resolutions and over large extents, **could Remote Sensing bridge this gap?**

METHODS

Occurrence data: 15 pairs (some surveyed twice)

- 391 foraging points + 391 pseudoabsences

(random points being within 300m around each nest AND at least 25m far from a foraging p.)

Environmental predictors:

- **Land-cover** ESA’s *Sentinel-2* multispectral images - Spectral indices, Tasseled Cap Transf., Rao’s Q index

- **Topography** Italian DEM *TINITALY* - altitude, slope, roughness, aspect, daily solar radiation

- **Microclimate** ‘*microclima*’/’*NicheMapR*’ R-packages - daily min, mean, and max air-temperature

Derived both as absolute values and as heterogeneity measures of fine-scale variation (st.dev. in a 3x3-pixels window)

Study area

Example of foraging (blue) and control (orange) points
Remotely sensed variables explain microhabitat selection and reveal buffering behaviours against warming in a climate-sensitive bird species

Corrado Alessandrini, Davide Scridel, Luigi Boitani, Paolo Pedrini, Mattia Brambilla

RESULTS

Fine scale foraging patterns

- Adult snowfinches foraged at locations with intermediate vegetation cover and higher snow heterogeneity, avoiding rocky/anthropized areas and extreme microclimates (both warm or cold)

DISCUSSION

- These results are highly consistent with those from previous studies where environmental predictors were mainly recorded by researchers in the field
- Snowfinches strictly depend on climate-sensitive foraging microhabitats
- RS can provide ecologically sound insights
- **Habitat heterogeneity** is a key feature

Temperature effect on foraging behaviour

- Temperature interacted with other environmental drivers in shaping foraging behaviour: snowfinches selected for cooler, shaded and more snowy foraging grounds at higher temperatures

- This could represent a mechanism of **behavioural buffering** against physiologically stressful conditions that leads snowfinches to select for thermically-less stressful (but still energetically-profitable) foraging grounds
- Snow patches could serve simultaneously as foraging and **relief habitat**
Remotely sensed variables explain microhabitat selection and reveal buffering behaviours against warming in a climate-sensitive bird species

Corrado Alessandrini, Davide Scridel, Luigi Boitani, Paolo Pedrini, Mattia Brambilla

FUTURE RESEARCH

This Remotely-Sensed Fine-scale Approach could:

- **Be the quantitative basis for model-informed grassland management** (this and other alpine species would benefit)
- **Be extended to other life-stages in order to provide a year-round outlook** of the most critical factors affecting the species’ distribution (and survival)
- **Investigate other temperature-mediated behaviours** in such a cold-adapted, climate-sensitive species by means of RS microclimatic models

TAKE-HOME MESSAGES

White-winged Snowfinch

- Vulnerable to climate change due to its dependence on climate-sensitive foraging microhabitats
- Thermal conditions shapes its foraging behaviour during nestling-rearing stage
- Foraging suitability maps could be implemented over the entire Alpine region to monitor the species during this critical life stage

Remote Sensing

- An ever-increasing amount of useful data: Open-source, uniform, scalable, at high resolutions, over continental extents
- Provided relevant predictors to build ecologically-sound, predictive models

MANY THANKS TO..

C. Celada, Lipu/BirdLife Italia and Lipu UK for support, F. Capelli, A. Forti and M. Bazzanella for help with fieldwork, L. Pedrotti and P. Partel for help working within parks, G. Bogliani for support and cooperation, R. M. Salvatori and C. Ricotta for their kind help with processing remote sensing data, I. Maclean for help with microclimate modelling, M. Delgado and an anonymous reviewer who are providing very helpful comments.

SPECIAL THANKS TO..

Everyone who works for and supports Open-Source data, softwares, and knowledge.

CONTACTS

corr.alessandrini@gmail.com
korandocando

Thanks EOU 2022!
Good birding to everyone!!